The Empire State Building
Repositioning an Icon as a Model for Energy Efficient Investment
The Empire State Building
Demonstrate the business case for cost effective energy efficient retrofits through verifiable operating costs reductions and payback analysis

<table>
<thead>
<tr>
<th>Information</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>102 stories and 2.8 million square feet</td>
<td></td>
</tr>
<tr>
<td>4.0 million visitors per year</td>
<td></td>
</tr>
<tr>
<td>$11 million in annual energy costs</td>
<td></td>
</tr>
<tr>
<td>Peak electric demand of 9.5 MW down from 11.6 (3.8 W/sf incl. HVAC)</td>
<td></td>
</tr>
<tr>
<td>88 kBtu per sf per yr for the office building</td>
<td></td>
</tr>
<tr>
<td>CO₂ emissions of 25,000 tons per year (22 lbs/sqft)</td>
<td></td>
</tr>
</tbody>
</table>
Motivation

The retrofit of the Empire State Building was motivated by the building ownership’s desire to:

1) Reposition the world's most famous office building into a pre-war trophy asset
2) Prove or disprove energy efficiency retrofits’ economic viability
3) Use our work to publicize and differentiate our building and attract tenants
4) Produce a replicable model for energy efficiency retrofits of existing buildings, which will make up 85% of buildings in place in New York City in 2030
5) “If the only place we succeed is ESB, the effort is a failure.”
“Green” vs. Energy Efficient Retrofits

Green building practices include energy efficiency. Energy efficient retrofits focus on quantifiable energy efficiency measures.

Green Building Practices

- Renewable, recycled-content, reused and locally produced materials
- Indoor air quality (voc-free materials, DCV)
- Recycling programs
- Water reduction
- Green cleaning
- Green pest management

Energy Efficient Retrofits

- Reduce loads
- Reduce energy usage
- Optimize systems efficiency
- Provide controls
- Integrated, lifecycle approach
- Quantifiable metrics
- Guaranteed savings
- Measurable payback and return on investment
Industry drivers for energy efficient retrofits

Converging forces
- Recognition of need to develop more sustainable and efficient business practices
- Acceptance of energy supply constraints and national security issues posed by energy dependence
- Ongoing federal, state and local legislative action
- Corporate trend toward GRI reporting, self regulation and reduction in GHG emissions
- Customer, employee and shareholder pressures

Business opportunity
- Growing pressure to alter appraisals, values for lending and purchasing based on sustainability
- Reduced operating costs through efficiency
- Increased marketability, competitiveness
- Improved work environments, productivity, recruitment and retention
- Positive NPV and ROI
- Fund improvements through energy savings
- Maintain value
Demonstrate business case through verifiable operating costs reductions and payback analysis

With a $550 million capital improvement program underway, ownership decided to re-evaluate certain projects with cost-effective energy efficiency and sustainability opportunities in mind.

Capital Budget Adjustments for Energy Efficiency Projects

- **2008 Capital Budget for Energy-Related Projects = $93m + 0% Energy Savings**
- **Sum of adds / changes / deletes = +$13m**
- **3.1 year payback on incremental cost**
- **New Capital Budget w / Efficiency Projects = $106m + 38% Energy Savings**
Balance financial return & carbon reduction
ESB can achieve a high level of CO₂ and energy reduction cost-effectively
The business case – integrated approach
More than half the savings exist within tenant spaces
Better thermal comfort resulting from better windows, radiative barrier, and better controls;
Improved indoor air quality resulting from DCV; and
Better lighting conditions that coordinate ambient and task lighting.
Positive ROI
Tenant Prebuilt Program and Design Guidelines
Savings in Tenant Spaces

Investments based on incremental cost and projected savings

<table>
<thead>
<tr>
<th></th>
<th>Total Project Cost</th>
<th>Total Cost ($/rsf)</th>
<th>Construction Cost ($/rsf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class ‘A’ Office Budget</td>
<td>$4,413,404</td>
<td>$180.88</td>
<td>$121.45</td>
</tr>
<tr>
<td>Actual Costs</td>
<td>$4,624,262</td>
<td>$189.52</td>
<td>$132.95</td>
</tr>
<tr>
<td>LEED Premium & Energy Efficiency</td>
<td>$210,858</td>
<td>$8.64</td>
<td>$11.50</td>
</tr>
</tbody>
</table>

*Total LEED Premium – 4.7%

<table>
<thead>
<tr>
<th>Energy Saving (NPV for 15 Yrs)</th>
<th>$593,496</th>
</tr>
</thead>
<tbody>
<tr>
<td>NYSERDA Grant (Approx.)</td>
<td>$22,802</td>
</tr>
<tr>
<td>Net Positive</td>
<td>$405,440</td>
</tr>
</tbody>
</table>

**Total Savings – 9.2%

Data provided by Skanska based on performance of their 32nd floor office at the ESB, 2009
Implementing recommended measures

Eight interactive levers chosen iteratively from more than 60 options ranging from base building measures to tenant engagement deliver these results

Annual Energy Savings by Measure

- Baseline
- Balance of DDC: 9%
- Tenant Daylighting/Plugs: 6%
- VAVAHU's: 5%
- Retrofit Chiller Plant: 5%
- Building windows: 5%
- Tenant Energy Mgmt: 3%
- Radiative barrier: 3%
- Tenant DCV: 2%
- Energy Use: 38% Reduction

11
Measures

WINDOWS: Remanufacture existing insulated glass units (IGU) within the Empire State Building's approximately 6,500 double-hung windows to include suspended coated film and gas fill.
Measures

RADIATIVE BARRIER: Install more than six-thousand insulated reflective barriers behind radiator units located on the perimeter of the building.
Measures

CHILLER PLANT RETROFIT: The chiller plant retrofit project includes the retrofit of four industrial electric chillers in addition to upgrades to controls, variable speed drives, and primary loop bypasses.
Measures

VAV AIR HANDLING UNITS: Replace existing constant volume units with variable air volume units using a new air handling layout (two floor-mounted units per floor instead of four ceiling-hung units).
Measures

DDC CONTROLS: The measure involves upgrading the existing control systems at the Empire State Building becoming *one of the largest wireless networks ever installed.*

Real-time *facilities performance index monitoring* used for continuous commissioning of HVAC systems.
Measures

DEMAND CONTROL VENTILATION: This project involves the installation of CO2 sensors for control of outside air introduction to chiller water and DX Air Handling Units.
TENANT ENERGY MANAGEMENT: This project will provide tenants with access to online energy consumption and benchmarking information as well as sustainability tips and updates.
Practical Next steps
What you can do to take action

1) Triage your building portfolio based on renovation cycle

2) Create a sustainability master plan including retrofit projects, design standards, lease structure changes, tenant energy management programs, and marketing initiatives

3) Commit to an integrated, whole-building retrofit approach: Conduct whole-building audits rather than single measure projects

4) Require performance guarantees with ongoing measurement and verification of savings to reduce risk and maintain performance

5) Engage tenants, employees, and building occupants in energy savings efforts through training, tools, technology

6) Create concrete successes at the building and pre-built level to build momentum and enthusiasm
A project of this scale might seem far removed from your small office or home - but there are opportunities to save energy in any situation.

Read more

Built during the Great Depression, the Empire State Building symbolizes America's limitless potential. Today the building is undergoing a major sustainability retrofit to become a leading example of economic and environmental revitalization.

Consulting, design, and construction partners Clinton Climate Initiative (CCI), Johnson Controls Inc. (JCI), Jones Lang LaSalle (JLL), and Rocky Mountain Institute (RMI), recently completed an 18 month modeling and analysis project which will save 38 percent of the building's energy and $1.4 million annually.

This website provides detailed information on the building's transformation.

Read the white paper.
Contact Information

• Dana Robbins Schneider
 Jones Lang LaSalle
 dana.schneider@am.jll.com
 917.882.5646

• Paul Rode
 Johnson Controls, Inc.
 paul.rode@jci.com
 914.419.5032